Powered By Blogger

Senin, 29 Oktober 2012

PERSAMAAN DIFERENSIAL

Persamaan diferensial adalah persamaan matematika untuk fungsi satu variabel atau lebih, yang menghubungkan nilai fungsi itu sendiri dan turunannya dalam berbagai orde. Persamaan diferensial memegang peranan penting dalam rekayasa, fisika, ilmu ekonomi dan berbagai macam disiplin ilmu alin.
Visualisasi aliran udara ke dalam saluran dimodelkan sesuai persamaan Navier-Stokes

Persamaan diferensial muncul dalam berbagai bidang sains dan teknologi, bilamana hubungan deterministik yang melibatkan besaran yang berubah secara kontinu (dimodelkan oleh fungsi matematika) dan laju perubahannya (dinyatakan sebagai turunan) diketahui atau dipostulatkan. Ini terlihat misalnya pada mekanika klasik, di mana gerakan sebuah benda diperikan oleh posisi dan kecepatannya terhadap waktu. Hukum Newton memungkinkan kita mengetahui hubungan posisi, kecepatan, percepatan dan berbagai gaya yang bertindak terhadap benda tersebut, dan menyatakannya sebagai persamaan diferensial posisi sebagai fungsi waktu. Dalam banyak kasus, persamaan diferensial ini dapat dipecahkan secara eksplisit, dan menghasilkan hukum gerak.

Contoh pemodelan masalah dunia nyata menggunakan persamaan diferensial adalah penentuan kecepatan bola yang jatuh bebas di udara, hanya dengan memperhitungkan gravitasi dan tahanan udara. Percepatan bola tersebut ke arah tanah adalah percepatan karena gravitasi dikurangi dengan perlambatan karena gesekan udara. Mencari kecepatan sebagai fungsi waktu mensyaratkan pemecahan sebuah persamaan diferensial.

Pengelompokan 
Teori persamaan diferensial sudah cukup berkembang, dan metode yang digunakan bervariasi sesuai jenis persamaan.

1. Persamaan Diferensial Biasa  
Persamaan diferensial biasa adalah persamaan diferensial di mana fungsi yang tidak diketahui (variabel terikat) adalah fungsi dari variabel bebas tunggal. Dalam bentuk paling sederhana fungsi yang tidak diketahui ini adalah fungsi riil atau fungsi kompleks, namun secara umum bisa juga berupa fungsi vektor maupun matriks. Lebih jauh lagi, persamaan diferensial biasa digolongkan berdasarkan orde tertinggi dari turunan terhadap variabel terikat yang muncul dalam persamaan tersebut.

Contoh sederhana adalah hukum gerak kedua Newton, yang menghasilkan persamaan diferensial


untuk gerakan partikel dengan massa konstan m. Pada umumnya, gaya F tergantung kepada posisi partikel x(t) pada waktu t, dan demikian fungsi yang tidak diketahui x(t) muncul pada kedua ruas persamaan diferensial, seperti yang diindikasikan dalam notasi F(x(t)).

Persamaan diferensial biasa dibedakan dengan persamaan diferensial parsial, yang melibatkan turunan parsial dari beberapa variabel.

Persamaan diferensial biasa muncul dalam berbagai keadaan, termasuk geometri, mekanika, astronomi dan pemodelan populasi. Banyak matematikawan ternama telah mempelajari persamaan diferensial dan memberi sumbangan terhadap bidang studi ini, termasuk Isaac Newton, Gottfried Leibniz, keluarga Bernoulli, Riccati, Clairaut, d'Alembert dan Euler.

Dalam kasus persamaan tersebut linier, persamaan diferensial biasa dapat dipecahkan dengan metode analitik. Malangnya, kebanyakan persamaan diferensial nonlinier, dan kecuali sebagian kecil, tidak dapat dipecahkan secara eksak. Pemecahan hampiran dapat dicapai menggunakan komputer.

2. Persamaan Diferensial Parsial 
Persamaan diferensial parsial (PDP) adalah persamaan yang di dalamnya terdapat suku-suku diferensial parsial, yang dalam matematika diartikan sebagai suatu hubungan yang mengaitkan suatu fungsi yang tidak diketahui, yang merupakan fungsi dari beberapa variabel bebas, dengan turunan-turunannya melalui variabel-variabel yang dimaksud. PDP digunakan untuk melakukan formulasi dan menyelesaikan permasalahan yang melibatkan fungsi-fungsi yang tidak diketahui, yang merupakan dibentuk oleh beberapa variabel, seperti penjalaran suara dan panas, elektrostatika, elektrodinamika, aliran fluida, elastisitas, atau lebih umum segala macam proses yang terdistribusi dalam ruang, atau terdistribusi dalam ruang dan waktu. Kadang beberapa permasalahan fisis yang amat berbeda memiliki formulasi matematika yang mirip satu sama lain.
Pengantar

Bentuk paling sederhana dari persamaan diferensial adalah


di mana u suatu fungsi tak diketahui dari x dan y. Hubungan ini mengisyaratkan bahwa nilai-nilai u(x,y) adalah tidak bergantung dari x. Oleh karena itu solusi umum dari persamaan ini adalah


di mana f adalah suatu fungsi sembarang dari variabel y. Analogi dari persamaan diferensial biasa untuk persamaan ini adalah


yang memiliki solusi


di mana c bernilai konstan (tidak bergantung dari nilai x). Kedua contoh di atas menggambarkan bahwa solusi umum dari persamaan diferensial biasa melibatkan suatu kostanta sembarang, akan tetapi solusi dari persamaan diferensial parsial melibatkan suatu fungsi sembarang. Sebuah solusi dari persamaan diferensial parsial secara umum tidak unik; kondisi tambahan harus disertakan lebih lanjut pada syarat batas dari daerah di mana solusi didefinisikan. Sebagai gambaran dalam contoh sederhana di atas, fungsi \!f(y) dapat ditentukan jika \!u dispesifikasikan pada sebuah  garis .

Baik persamaan diferensial biasa maupun parsial dapat digolongkan sebagai linier atau nonlinier. Sebuah persamaan diferensial disebut linier apabila fungsi yang tidak diketahui dan turunannya muncul dalam pangkat satu (hasilkali tidak dibolehkan). Bila tidak memenuhi syarat ini, persamaan tersebut adalah nonlinier.
PROFIL LENGKAP
Nama        : Tiar Nugraha
TTL           : Wonogiri, 10 Juni 1993
Alamat       : Banjarsari. Kab Ciamis-Jawa Barat
Pekerjaan  : Mahasiswa/ Pelajar di STMIK- TASIKMALAYA